Chapter

SAMPLE GEOMETRY
AND RANDOM SAMPLING

3.1 Introduction

With the vector concepts introduced in the previous chapter, we can now delve deeper
into the geometrical interpretations of the descriptive statistics X, S,,, and R; we do so in
Section 3.2. Many of our explanations use the representation of the columns of X as p
vectors in n dimensions. In Section 3.3 we introduce the assumption that the observa-
tions constitute a random sample. Simply stated, random sampling implies that (1) mea-
surements taken on different iterns (or trials) are unrelated to one another and (2) the
joint distribution of all p variables remains the same for all items. Ultimately, it is this
structure of the random sample that justifies a particular choice of distance and dictates
the geometry for the n-dimensional representation of the data. Furthermore, when data
can be treated as a random sample, statistical inferences are based on a solid foundation.

Returning to geometric interpretations in Section 3.4, we introduce a single
number, called generalized variance, to describe variability. This generalization of
variance is an integral part of the comparison of multivariate means. In later sec-
tions we use matrix algebra to provide concise expressions for the matrix products
and sums that allow us to calculate X and §,, directly from the data matrix X. The
connection between X, S,,, and the means and covariances for linear combinations
of variables is also clearly delineated, using the notion of matrix products.

3.2 The Geometry of the Sample

A single multivariate observation is the collection of measurements on p different
variables taken on the same item or trial. As in Chapter 1, if n observations have
been obtained, the entire data set can be placed in an n X p array (matrix):
11 X127t Xyp
X - T T
(n%p) : : . :
Xp1 Xn2 "t Xpp

Il
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Each row of X represents a multivariate observation. Since the entire set of
measurements is often one particular realization of what might have beep
observed, we say that the data are a sample of size n from a p-variate
“population.” The sample then consists of n measurements, each of which has p
components.

As we have seen, the data can be plotted in twp different ways. For the
p-dimensional scatter plot, the rows of X represent n points in p-dimensiona]
space. We can write )

Xy Xz o Xpp x; | <« 1st (multivariate) observation
X21 X2 X X2
=1 P =1 (3-1)
(nxp) : :
Xnl Xng Ut Xnp x;, | + nth (multivariate) observation

The row vector x}, representing the jth observation, contains the coordinates of a-
point.

The scatter plot of n points in p-dimensional space provides information on the
locations and variability of the points. If the points are regarded as solid spheres,
the sample mean vector X, given by (1-8), is the center of balance. Variability occurs
in more than one direction, and it is quantified by the sample variance—covariance
matrix S,,. A single numerical measure of variability is provided by the determinant
of the sample variance—covariance matrix. When p is greater than 3, this scatter
plot representation cannot actually be graphed. Yet the consideration of the data
as n points in p dimensions provides insights that are not readily available from
algebraic expressions. Moreover, the concepts illustrated for p = 2 or p = 3 remain
valid for the other cases.

Example 3.1 (Computing the mean vector) Compute the mean vector X from the
data matrix.

Plot the n = 3 data points in p = 2 space, and locate X on the resulting diagram.
The first point, x;, has coordinates x; = [4, 1]. Similarly, the remaining two
points are x5 = [—1, 3] and x} = [3, 5]. Finally,

4-1+3

1+3+5 3

3

)
I
[
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[ Figure 3.1 A plot of the data
matrix X asn = 3 pointsin p = 2
space.

Figure 3.1 shows that x is the balance point (center of gravity) of the scatter
plot. ]

The alternative geometrical representation is constructed by considering the
data as p vectors in n-dimensional space. Here we take the elements of the columns
of the data matrix to be the coordinates of the vectors. Let

i1 X2 o X, .
X x e x
X =2 T2 = (yiy iy, (3-2)
. el . ty, b iy
(o) D : mivi--iy
Xny Xn2 0 Xpp
Then the coordinates of the first point yj = [x;;, X2q,..., X, ] are the n measure-
ments on the first variable. In general, the ith point y; = [xy;, X3;,.-+, Xni] IS
determined by the n-tuple of all measurements on the ith variable. In this geo-
metrical representation, we depict yj,. .., y, as vectors rather than points, as in the

p-dimensional scatter plot. We shall be manipulating these quantities shortly using
the algebra of vectors discussed in Chapter 2.

Example 3.2 (Data as p vectors in n dimensions) Plot the following data as p = 2
vectors in n = 3 space:
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Figure 3.2 A plot of the data
matrix X as p = 2 vectors in
n = 3 space.

Herey; = [4, —1,3] and y5 = [1, 3, 5]. These vectors are shown in Figure 3.2. m

Many of the algebraic expressions we shall encounter in multivariate analysis
can be related to the geometrical notions of length, angle, and volume. This is im-
portant because geometrical representations ordinarily facilitate understanding and
lead to further insights.

Unfortunately, we are limited to visualizing objects in three dimensions, and
consequently, the n-dimensional representation of the data matrix X may not seem
like a particularly useful device for n > 3. It turns out, however, that geometrical
relationships and the associated statistical concepts depicted for any three vectors
remain valid regardless of their dimension. This follows because three vectors, even if
n dimensional, can span no more than a three-dimensional space, just as two vectors
with any number of components must lie in a plane. By selecting an appropriate
three-dimensional perspective—that is, a portion of the n-dimensional space con-
taining the three vectors of interest—a view is obtained that preserves both lengths
and angles. Thus, it is possible, with the right choice of axes, to illustrate certain alge-
braic statistical concepts in terms of only two or three vectors of any dimension n.
Since the specific choice of axes is not relevant to the geometry, we shall always
label the coordinate axes 1,2, and 3. )

It is possible to give a geometrical interpretation of the process of finding a sam-
ple mean. We start by defining the n X 1 vector 1, = [1, 1,..., 1]. (To simplify the
notation, the subscript n will be dropped when the dimension of the vector 1, is
clear from the context.) The vector 1 forms equal angles with each of the n
coordinate axes, so the vector (1 / \/ﬁ)l has unit length in the equal-angle direction.

Consider the vector y; = [xy;, Xa;, . .., X,;]. The projection of y; on the unit vector
[1/\/;1)1 is, by (2-8),
1 1 Xyt x5+ + x,,; _
N—1]—1= 1=7x -
Y (\/ﬁ > Vn n %l @3)

That is, the sample mean ¥; = (x;; + x; + --+ + x,;)/n = yj1/n corresponds to the
multiple of 1 required to give the projection of y; onto the line determined by 1.
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Further, for each y;, we have the decomposition

yi—xl

. -

0 1 x 1

where X;1 is perpendicular to y; — ¥;1. The deviation, or mean corrected, vector is

Xy — X
4=y —x1=| " ¥ (3-4)
Xpi — X;

The elements of d; are the deviations of the measurements on the ith variable from
their sample mean. Decomposition of the y; vectors into mean components and
deviation from the mean components is shown in Figure 3.3 for p = 3 and n = 3.

3

d Il
¥ 1 1 Y2

¥; Figure 3.3 The decomposition
of y; into a mean component
X;1 and a deviation component
1 d=y,~x%l,i=1223

Example 3.3 (Decomposing a vector into its mean and deviation components) Let
us carry out the decomposition of y; into ;1 and d; = y; ~ X1, = 1,2, for the data
given in Example 3.2:

4 1
X=[-13
35

1 2 1 3
x1=211|=]2 »nl=31]|=]|3
1 2 1 3
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Consequently,
4 2 2
di=y-—X%l=|-1|-12|=|-3
3 2 1

and

1 3 -2
d=y-Hl=|3|-|3(=| 0
: 5 3 2

We note that X;1 and d; = y1 — X;1 are perpendicular, because

2
F)®m-—H)=[2 2 2]|-3|=4~6+2=0
’ 1

A similar result holds for X,1 and d, = y, — X,1. The decomposition is

[ 4 2 2
n=|[(-1|=12|+|-3

L 3 2 1

1 3 -2
R=3|=(3 |+ 0

L5 3 2 -

For the time being, we are interested in the deviation (or residual) vectors
d; = y; — %;1. A plot of the deviation vectors of Figure 3.3 is given in Figure 3.4.

| Figure 3.4 The deviation
d; vectors d; from Figure 3.3.
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We have translated the deviation vectors to the origin without changing their lengths
or orientations.

Now consider the squared lengths of the deviation vectors. Using (2-5) and
(3-4), we obtain

= did; 2 (i — &)’ (3-5)

(Length of deviation vector)2 = sum of squared deviations
From (1-3), we see that the squared length is proportional to the variance of
the measurements on the ith variable. Equivalently, the length is proportional to
the standard deviation. Longer vectors represent more variability than shorter

vectors.
For any two deviation vectorsd; and d,

did, = il (xji = X) (xje — %) (3-6)
=

Let 8;, denote the angle formed by the vectors d; and d. From (2-6), we get
dlldk = Ld,»Ldk Cos (9[,()

or, using (3-5) and (3-6), we obtain

il(xji = X)(x — Xp) = \/En; (xj — %)’ \/g; (xjx — %) cos (6:x)
= j= j=

so that [see (1-5)]
Sik

rixg = ———== = cos(6; (3-7)

ik \/S: \/E;c— ( lk)
The cosine of the angle is the sample correlation coefficient. Thus, if the two
deviation vectors have nearly the same orientation, the sample correlation will be
close to 1. If the two vectors are nearly perpendicular, the sample correlation will
be approximately zero. If the two vectors are oriented in nearly opposite directions,
the sample correlation will be close to —1.

Example 3.4 (Calculating S,, and R from deviation vectors) Given the deviation vec-
tors in Example 3.3, let us compute the sample variance-covariance matrix S, and
sample correlation matrix R using the geometrical concepts just introduced.

From Example 3.3,

2 -2
d=|-3| and d; = 0
1 2



118 Chapter 3 Sample Geometry and Random Sampling

— 1T 1 1 1

Figure 3.5 The deviation vectors
dl and dz.

These vectors, translated to the origin, are shown in Figure 3.5. Now,

or 8§11

il

or Sy,

or 12

and

2
did, =[2 -3 1]l -3 |=14=3s;
1
¥ Also,
-2
dyd,=[-2 0 2]| 0|=8=23s
2
§. Finally,
-2
d’ldz = [2 -3 1] O|=-2= 3512
2
- % Consequently,
S12 "3
= = = ~.189
127 Ve Vi %\/g
s, = [ ¥ 'é} R [1 -.189‘J
-5 3 -.189 1
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The concepts of length, angle, and projection have provided us with a geometrical
interpretation of the sample. We summarize as follows:

Geometrical Interpretation of the Sample

1. The projection of a column y; of the data matrix X onto the equal angular
vector 1 is the vector X;1. The vector ¥;1 has length V| X; |. Therefore, the
ith sample mean, ¥;, is related to the length of the projection of y; on 1.

2. The information comprising S,, is obtained from the deviation vectors d; =
Y: — %1 = [x;; — %, %; — X;..., X,; — %) The square of the length of d;
is ns;;, and the (inner) product between d; and d, is ns;;.}

3. The sample correlation r;; is the cosine of the angle between d; and d,.

3.3 Random Samples and the Expected Values of
the Sample Mean and Covariance Matrix

In order to study the sampling variability of statistics such as X and S,, with the ulti-
mate aim of making inferences, we need to make assumptions about the variables
whose observed values constitute the data set X.

Suppose, then, that the data have not yet been observed, but we intend to collect
n sets of measurements on p variables. Before the measurements are made, their
values cannot, in general, be predicted exactly. Consequently, we treat them as ran-
dom variables. In this context, let the (j, k)-th entry in the data matrix be the
random variable X, . Each set of measurements X; on p variables is a random vec-
tor, and we have the random matrix

X Xz - Xip Xj
A T T (3-8)
(nxp) : : . : :
X1 an an x;:
A random sample can now be defined.

If the row vectors Xi, X5, ..., X}, in (3-8) represent independent observations
from a common joint distribution with density function f(x) = f(x;, Xp,...,Xp),
then X, X,,..., X, are said to form a random sample from f(x). Mathematically,
X,,X,,..., X, form a random sample if their joint density function is given by the

product f(x;)f(xz) - f(X,), where f(x;) = f(x;1, Xj3,..., x;,,) is the density func-
tion for the jth row vector.
Two points connected with the definition of random sample merit special attention:
1L The measurements of the p variables in a single trial, such as Xj=
[X;1, Xj2,..., Xjp], will usually be correlated. Indeed, we expect this to be the
case. The measurements from different trials must, however, be independent.

! The square of the length and the inner product are (n — 1)s;; and (n — 1)s;, respectively, when
the divisor n — 1 is used in the definitions of the sample variance and covariance.
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2. The independence of measurements from trial to trial may not hold when the
variables are likely to drift over time, as with sets of p stock prices or p eco-
nomic indicators. Violations of the tentative assumption of independence can
have a serious impact on the quality of statistical inferences.

The following examples illustrate these remarks.

Example 3.5 (Selecting a random sample) As a preliminary step in designing a
permit system for utilizing a wilderness canoe area without overcrowding, a natural-
resource manager took a survey of users. The total wilderness area was divided into
subregions, and respondents were asked to give information on the regions visited,
lengths of stay, and other variables.

The method followed was to select persons randomly (perhaps using a random’
number table) from all those who entered the wilderness area during a particular
week. All persons were equally likely to be in the sample, so the more popular
entrances were represented by larger proportions of canoeists.

Here one would expect the sample observations to conform closely to the crite-
rion for a random sample from the population of users or potential users. On the
other hand, if one of the samplers had waited at a campsite far in the interior of the
area and interviewed only canoeists who reached that spot, successive measurements
would not be independent. For instance, lengths of stay in the wilderness area for dif-
ferent canoeists from this group would all tend to be large. =

Example 3.6 (A nonrandom sample) Because of concerns with future solid-waste
disposal, an ongoing study concerns the gross weight of municipal solid waste gen-
erated per year in the United States (Environmental Protection Agency). Estimated
amounts attributed to x; = paper and paperboard waste and x, = plastic waste, in
millions of tons, are given for selected years in Table 3.1. Should these measure-
ments on X' = [ X;, X;] be treated as a random sample of size n = 7? No! In fact,
except for a slight but fortunate downturn in paper and paperboard waste in 2003,
both variables are increasing over time.

Table 3.1 Solid Waste
Year 1960 1970 1980 1990 1995 2000 2003
x, (paper) 292 443 552 727 817 877 83.1
x, (plastics)y 4 29 68 171 189 247 267
]

As we have argued heuristically in Chapter 1, the notion of statistical indepen-
dence has important implications for measuring distance. Euclidean distance appears
appropriate if the components of a vector are independent and have the same vari-
ances. Suppose we consider the location of the kth column Y} = [ Xiz, Xoks---» Xnk)
of X, regarded as a point in n dimensions. The location of this point is determined by
the joint probability distribution f(yi) = f(x14, Xox,- .., X, ). When the measure-
ments Xy, Xok, ..., X are a random sample, f(Yi) = f(X1x, Xoks- -y Xnk) =
Felx1) (i) - - - f( Xnx) and, consequently, each coordinate x;, contributes equally

j
to the location through the identical marginal distributions f, (x;, ).
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If the n components are not independent or the marginal distributions are not
identical, the influence of individual measurements (coordinates) on location is
asymmetrical. We would then be led to consider a distance function in which the
coordinates were weighted unequally, as in the “statistical” distances or quadratic
forms introduced in Chapters 1 and 2.

Certain conclusions can be reached concerning the sampling distributions of X
and §,, without making further assumptions regarding the form of the underlying
joint distribution of the variables. In particular, we can see how X and S, fare as point
estimators of the corresponding population mean vector yu and covariance matrix X.

Result 3.1. Let X, X,,..., X, be a random sample from a joint distribution that
has mean vector u and covariance matrix 3. Then X is an unbiased estimator of u,
and its covariance matrix is

1
)
n
That is,
EX)=mn (population mean vector)
e _ 1 population variance—covariance matrix
Cov(X) =7 % divided by sample size (-9
For the covariance matrix §,,,
E(S,) =
Thus,
£(-2s,) =3 (3-10)
n—1

so [n/(n ~ 1)]S,, is an unbiased estimator of %, while S, is a biased estimator with

(bias) = E(S,) — X = —(1/n)Z.

Proof. Now, X = (X; + X, + --- + X,,)/n. The repeated use of the properties of
expectation in (2-24) for two vectors gives

- 1 1 1

() £(ix) i)

E(X,) + ~E(X;) + -+ E(X,) =

I
by

+1 P
n“' n”'

1
T =

I

Next,

x-m) (25 k=)

&=

M=

(X=X wy = (1

1
2

~.
—

S (X; - ) (Xe — )’

£=1

™M=

I

I
It
-

J
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SO ‘

Cov(X) = B(X = ) (X = ) = (3 3 B = ke = w))

For j # ¢, each entry in E(X; — u)(X¢ — p)' is zero because the entry is the
covariance betweén a component of X; and a component of X, and these are
independent. [See Exercise 3.17 and (2-29).]
Therefore,
— 1 "
cov(X) = (3 5%, - wx; - wy )
=

Since 3, = E(X; — #)(X; — p)' is the common population covariance matrix for
each X, we have

Cov(X) = i(_ilE(X/ - n)(X; - n)’) =;15 (2+3+--+3)
=

n2
nterms
1 1
- 9= (1)2

To obtain the expected value of S,,, we first note that (X,; — X;) (X ~ X,) is

the (i, k)th element of (X; — X)(X; — X)". The matrix representing sums of
squares and cross products can then be written as

i X; - X)(X;, - X)' = 2 (X, - X)X; + (i(x, - i)) (-X)
j=1 X j=1 j=1

"since 3, (X; — X) = 0and nX' = Y X}. Therefore, its expected value is

J=1 i=1

n

E ( XX - nii') = 3 EXX) - nE(XX)
j=1 Jj=1

For any random vector V with E(V) = uy and Cov(V) = Xy, we have E(VV’) =
S + mymy. (See Exercise 3.16.) Consequently,

— 1
E(X;X}) =%+ pup’ and E(XX') = ;2 + '
Using these results, we obtain

i E(X;X]) - nE(XX') = n3 + npu' — n(%z + pp’) =(n-1)3%
=1

and thus, since S, = (1/n) (E XX}~ nii’), it follows immediately that
=

£(s) =" Vs
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Result 3.1 shows that the (i, k)th entry, (n — 1) > (X;; — X;) (Xjx — Xi), of
j=1

[n/(n — 1)]S, is an unbiased estimator of o . Howevér, the individual sample stan-
dard deviations Vs, calculated with either n or n — 1 as a divisor, are not unbiased
estimators of the corresponding population quantities Va;;. Moreover, the correla-
tion coefficients r;, are not unbiased estimators of the population quantities pix.
However, the bias E(\/ﬂ) ~ Vo;;, or E(rix) — pix, can usually be ignored if the
sample size n is moderately large.

Consideration of bias motivates a slightly modified definition of the sample
variance-covariance matrix. Result 3.1 provides us with an unbiased estimator S of 2

(Unbiased) Sample Variance-Covariance Matrix

1 2 - <
§= (n - I)Sn = ,=21 (X; - X)(X; - X)' (3-11)

n-1

Here S, without a subscript, has (i, k)th entry (n — 1) > (X ~ X)) (X — X
=1

i
This definition of sample covariance is commonly used in many multivariate test
statistics. Therefore, it will replace S,, as the sample covariance matrix in most of the
material throughout the rest of this book.

3.4 Generalized Variance

With a single variable, the sample variance is often used to describe the amount of
variation in the measurements on that variable. When p variables are observed on
each unit, the variation is described by the sample variance—covariance matrix

St S12 t Sy1p
n
_ | s12 s S | 1 - -
S=1" o D TSk T _IE(xii_xi)(xjk—xk)
: : Lo n “
Sip S2p 77 Spp

The sample covariance matrix contains p variances and % p(p — 1) potentially
different covariances. Sometimes it is desirable to assign a single numerical value for
the variation expressed by S. One choice for a value is the determinant of S, which
reduces to the usual sample variance of a single characteristic when p = 1. This
determinant? is called the generalized sample variance:

Generalized sample variance = |§| (3-12)

2 Definition 2A.24 defines “determinant” and indicates one method for calculating the value of a
determinant.
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Example 3.7 (Calculating a generalized variance) Employees (x;) and profits per
employee {x;) for the 16 largest publishing firms in the United States are shown in
Figure 1.3. The sample covariance matrix, obtained from the data in the April 3¢,
1990, Forbes magazine article, is

- g | 25204 6843
~68.43 12367

Evaluate the generalized variance.
In this case, we compute

|S| = (252.04) (123.67) ~ (—6843)(~6843) = 26,487 -

The generalized sample variance provides one way of writing the information
on all variances and covariances as a single number. Of course, when p > 1, some
information about the sample is lost in the process. A geometrical interpretation of
|S| will help us appreciate its strengths and weaknesses as a descriptive summary.

Consider the area generated within the plane by two deviation vectors
d; =y — X1and d; =y, — X,1. Let Ly, be the length of d; and Ly, the length of
d,. By elementary geometry, we have the diagram

and the area of the trapezoid is | Ly, sin(8) |Lg,. Since cos?(9) + sin®(8) = 1, we can

express this area as
Area = L4 Ly, V'1 — cos?(6)
From (3-5) and (3-7),

_Enl (xpn = %1)* = V(n - sy
=

i (xj2 — J—Cz)z =V(n -~ 1),
=

and
cos(0) = 3
Therefore,
Area = (n - 1) V11 Vg V1 — rfz = (fl - 1) vV 5’115’22(1 - 7%2) (3-13)
Also,

|S

Sin Sz || S11 V11 Vo
S12 §22 V11 VS 522

= 511822 ~ SuSria = sus(l — k) (3-19)
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Figure 3.6 (a) “Large” generalized sample variance for p = 3.
(b) “Small” generalized sample variance for p = 3.

If we compare (3-14) with (3-13), we see that
IS| = (area)?/(n ~ 1)?

Assuming now that [S| = (n — 1)""~V(volume)? holds for the volume gener-
ated in n space by the p — 1 deviation vectorsd;, d,,...,d,_;, we can establish the
following general result for p deviation vectors by 1nductlon (see [1], p. 266):

Generalized sample variance = |S| = (n — 1)™?(volume)? (3-15)

Equation (3-15) says that the generalized sample variance, for a fixed set of data, is
proportional to the square of the volume generated by the p deviation vectors

d=y—-%l dy=y, — X1,... =y, — %,1. Figures 3.6(a) and (b) show
trapezoidal regions, generated by p = 3 re51dual vectors, correspondlng to “large”

and “small” generalized variances.

For a fixed sample size, it is clear from the geometry that volume, or | [, will
increase when the length of any d; = y; — X1 (or V5s),) is increased. In addition,
volume will increase if the residual vectors of fixed length are moved until they are
at right angles to one another, as in Figure 3.6(a). On the other hand, the volume,
or | § |, will be small if just one of the s;; is small or one of the deviation vectors lies
nearly in the (hyper) plane formed by the others, or both. In the second case, the
trapezoid has very little height above the plane. This is the situation in Figure 3.6(b),
where d; lies nearly in the plane formed by d, and d,.

3 If generalized variance is defined in terms of the sample covariance matrix S, = [(n —~ 1)/n]S, then,
using Result 2A.11, [S,| = |[(n — 1)/n]1,S| = [[(n ~ 1)/n]1,||S| = [(r — 1)/n]?|S|. Consequently,
using (3-15), we can also write the following: Generalized sample variance = |S,| = n™? (volume)*.
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Generalized variance also has interpretations in the p-space scatter plot representa.
tion of the data. The most intuitive interpretation concerns the spread of the scatter
about the sample mean point X’ = [X,, X,,..., X,]. Consider the measure of distance-
given in the comment below (2-19), with X playing the role of the fixed point & and S
playing the role of A. With these choices, the coordinates X' = [x;, X3,. .., X,] Of the
points a constant distance ¢ from X satisfy

(x - x)S7(x - %) =¢ (3-16)

[Whenp = 1,(x — x)'S7H{x — X) = (x; - il)z/su is the squared distance from x,
to X, in standard deviation units.]

Equation (3-16) defines a hyperellipsoid (an ellipse if p = 2) centered at X. It
can be shown using integral calculus that the volume of this hyperellipsoid is related
to| S |. In particular,

Volume of {x: (x — X)'S7\(x — %) = ¢’} = k,|S["2c? (3-17)
or

(Volume of ellipsoid)? = (constant) (generalized sample variance)

where the constant k, is rather formidable.’ A large volume corresponds to a large
generalized vanance.

Although the generalized variance has some intuitively pleasing geometrical
interpretations, it suffers from a basic weakness as a descriptive summary of the
sample covariance matrix §, as the following example shows.

Example 3.8 (Interpreting the generalized variance) Figure 3.7 gives three scatter
plots with very different patterns of correlation.
All three data sets have X' = [2, 1], and the covariance matrices are

_ |5 4 _ |3 0] _ | 5 -4 _
N N

Each covariance matrix S contains the information on the variability of the
component variables and also the information required to calculate the correla-
tion coefficient. In this sense, S captures the orientation and size of the pattern
of scatter.

The eigenvalues and eigenvectors extracted from § further describe the pattern
in the scatter plot. For

5 4 , . 0=(r~5) -4
S:
[4 5], the eigenvalues satisfy =(A=9( - 1)

4 For those who are curious, & » = 2077/ pT'(p/2), where I'(z} denotes the gamma function evaluated
at z.
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Figure 3.7 Scatter plots with three different orientations.

and we determine the eigenvalue—eigenvector pairs A; = 9, e = [1/\/2_, 1/ \/7] and
A =1¢ = [1/V2,~-1/VZ].

The mean-centered ellipse, with center X' = [2, 1] for all three cases, is
(x -%)'8Sx - %) =2

To describe this ellipse, as in Section 2.3, with A = §™!, we notice that if (A, e) is an
eigenvalue—eigenvector pair for S, then (A™, e) is an eigenvalue—eigenvector pair for
S~ That is, if Se = Ae, then multiplying on the left by S~ gives S"'Se = AS™le, or
S7le = A~le. Therefore, using the eigenvalues from S, we know that the ellipse
extends ¢ \V/A; in the direction of e; from X.
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In p = 2 dimensions, the choice ¢? = 5.99 will produce an ellipse that containg
approximately 95% of the observations. The vectors 3V5.99 e; and V5.99 e; are
drawn in Figure 3.8(a). Notice how the directions are the natural axes for the ellipse,
and observe that the lengths of these scaled eigenvectors are comparable to the size
of the pattern in each direction.

Next, for -

0
S = ':3 3:|, the eigenvaluessatisfy 0= (A — 3)?

and we arbitrarily choose the eigenvectors so that A; = 3,ef = [1, O]and A, = 3,
e, = [0, 1]-Thevectors V3 V589 e; and V3 V5.9 e, are drawn in Figure 3.8(b).

(a) - (b)

Figure 3.8 Axes of the mean-centered 95% ellipses for the scatter plots in
Figure 3.7.
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Finally, for

0=(1r—5)2—(—4)
=(A=-901 -1

and we determine the eigenvalue-eigenvector pairs A; = 9, ¢} = [1/V2, —1/V2]and
Az =1, e, =[1/V2, 1/v/2]. The scaled eigenvectors 3V/5.99 e; and V5.9 e, are
drawn in Figure 3.8(c).

In two dimensions, we can often sketch the axes of the mean-centered ellipse by
eye. However, the eigenvector approach also works for high dimensions where the
data cannot be examined visually.

Note: Here the generalized variance |S| gives the same value, |S| = 9, for all
three patterns. But generalized variance does not contain any information on the
orientation of the patterns. Generalized variance is easier to interpret when the two
or more samples (patterns) being compared have nearly the same orientations.

Notice that our three patterns of scatter appear to cover approximately the
same area. The ellipses that summarize the variability

(x —%)SHx-%) =

do have exactly the same area [see (3-17)], since all have |S| = 9. -

5 -4
S = [__4 Sj] ,  theeigenvalues satisfy

As Example 3.8 demonstrates, different correlation structures are not detected
by | S|. The situation for p > 2 can be even more obscure. -

Consequently, it is often desirable to provide more than the single number | S|
as a summary of S. From Exercise 2.12, |S| can be expressed as the product
A1A;- - A, of the eigenvalues of 8. Moreover, the mean-centered ellipsoid based on
S7! [see (3-16)] has axes whose lengths are proportional to the square roots of the
A/’s (see Section 2.3). These eigenvalues then provide information on the variability
in all directions in the p-space representation of the data. It is useful, therefore, to
report their individual values, as well as their product. We shall pursue this topic
later when we discuss principal components.

Situations in which the Generalized Sample Variance Is Zero

The generalized sample variance will be zero in certain situations. A generalized
variance of zero is indicative of extreme degeneracy, in the sense that at least one
column of the matrix of deviations,

3!

, - - =
X; —X X11 — X3 X2 T X3 o Xyp T Xp
’ 1 = = =
X — X - Xyp — X1 X33 — Xp -t sz_xp
P - - -
X, — X Xpp — X1 Xpa— X3 0 Xpp — X,
=X -1 x (3-18)

(nxp)  (2x1)(1xp)
can be expressed as a linear combination of the other columns. As we have shown
geometrically, this is a case where one of the deviation vectors—for instance, d} =
[x1; — Xi,..., x,; — X;]—lies in the (hyper) plane generated by d,...,d;-1,
diiq,...,d,.
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Result 3.2. The generalized variance is zero when, and only when, at least one de-
viation vector lies in the (hyper) plane formed by all linear combinations of the
others—that is, when the columns of the matrix of deviations in (3-18) are linearly

dependent.

Proof. If the columns of the deviation matrix (X - 1%') are linearly dependent,
there is a linear combination of the columns such that

0= aj COII(X - H’) + -+ apcolp(x — Hv)
(X -1x')a forsomea # 0

[

But then, as you may verify, (n — 1)8 = (X - x")'(X - 1x’) and

(n - l)Sa = (X — Hl)’(x _ li’)a =0
so the same a corresponds to a linear dependency, aj coly(S) + -+ + ap col,(8) =
Sa = 0, in the columns of S. S0, by Result 2A.9,|S| = 0.

In the other direction, if | $| = 0, then there is some linear combination Sa of the
columns of S such that Sa = 0. Thatis,® = (n — 1)Sa= (X - 1x")(X — Ix')a.
Premultiplying by a' yields

0= a'(X - ]_i')'(X - 1%')a = L%x_u,).
and, for the length to equal zero, we must have (X - 1¥)a = 0. Thus, the columns
of (X — Ix') are linearly dependent. -

Example 3.9 (A case where the generalized variance is zero) Show that | S | =0 for

125
) =141 6
X
" 40 4
and determine the degeneracy.
Herex' = [3,1,5],50
f{1-32-15-5 -2 1
X-1x=[4-31-16-5|=[1 0 1
4-3 0-1 4-5 1 -1 -1
The deviation (column) vectors are di=[-2,1,1], d;=[1,0,~1], and

d; = [0,1, —1]. Since d3 = d; + 2d;, there is column degeneracy. (Note that there
is row degeneracy also.) This means that one of the deviation vectors—for example,
d;—lies in the plane generated by the other two residual vectors. Consequently, the
three-dimensional volume is zero. This case is illustrated in Figure 3.9 and may be
verified algebraically by showing that |S| = 0. We have

Nl = RIW
Ll S =]

S =
(3x3)

O Njw W
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Figure 3.9 A case where the
three-dimensional volume is zero

(18] =0).
and from Definition 2A.24,
1 1 3 _3 1 -3 .
- 2| (_132 _3 2 2| (_1y3 2 —
Is1=3) J|C02+ () {0 O § gD
_ 1 3 _9_ 9 _
=3(1-3)+@3)(-3-0)+0=F-F=0 -

When large data sets are sent and received electronically, investigators are
sometimes unpleasantly surprised to find a case of zero generalized variance, so that
S does not have an inverse. We have encountered several such cases, with their asso-
ciated difficulties, before the situation was unmasked. A singular covariance matrix
occurs When, for instance, the data are test scores and the investigator has included
variables that are sums of the others. For example, an algebra score and a geometry
score could be combined to give a total math score, or class midterm and final exam
scores summed to give total points. Once, the total weight of a number of chemicals
was included along with that of each component.

This common practice of creating new variables that are sums of the original
variables and then including them in the data set has caused enough Iost time that
we emphasize the necessity of being alert to avoid these consequences.

Example 3.10 (Creating new variables that lead to a zero generalized variance)
Consider the data matrix

1 9 10
4 12 16
X=|2 10 12
5 8 13
311 14

where the third column is the sum of first two columns. These data could be the num-
ber of successful phone solicitations per day by a part-time and a full-time employee,
respectively, so the third column is the total number of successful solicitations per day.

Show that the generalized variance |S| = 0, and determine the nature of the
dependency in the data.
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We find that the mean corrected data matrix, with entries x;;, — X, is

-2 -1 -3
1 2 3
X-1x=[-1 0 -1
- 2 -2 0
6 1 1
The resulting covariance matrix is

o250 25}

S=|0 25 25

25 25 50

We verify that, in this case, the generalized variance
[S] =252 x5+0+0-25°-25-0=0

In general, if the three columns of the data matrix X satisfy a linear constraint
ayxj; + axj; + asx;3 = c,aconstant forall j, then a,%1 + a, ¥+ a3X; = c, so that

a)(xj; — X)) + axp - ) + az(xjz ~ X3) =0

for all j. That s,
(X-1x)a=0

and the columns of the mean corrected datamatrix are linearly dependent, Thus, the
inclusion of the third variable, which is linearly related to the first two, has led to the
case of a zero generalized variance.

— ‘Whenever the columns of the mean corrected data matrix are linearly dependent,

(n-18a=X-1®)X-mw)a=X-1x)0=0

and Sa = 0 establishes the linear dependency of the columns of S. Hence, [S| = 0.
Since Sa = 0 = Oa, we see that a is a scaled eigenvector of § associated with an
eigenvalue of zero. This gives rise to an important diagnostic: If we are unaware of
any extra variables that are linear combinations of the others, we can find them by
calculating the eigenvectors of § and identifying the one associated with a zero
eigenvalue. That is, if we were unaware of the dependency in this example, a com-
puter calculation would find an eigenvalue proportional toa’” = [1,1, —1], since

25 0 25 1 0 1
Sa=|0 25 25 1)=]10(=0] 1
25 25 501 0 -1

The coefficients reveal that

1(xj3 — %) + Uxjp = %) + (1) (x;3 — X3) =0 forallj
In addition, the sum of the first two variables minus the third is a constant ¢ for all n
units. Here the third variable is actually the sum of the first two variables, so the
columns of the original data matrix satisfy a linear constraint with ¢ = 0. Because
we have the special case ¢ = 0, the constraint establishes the fact that the columns
of the data matrix are linearly dependent. ]
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Let us summarize the important equivalent conditions for a generalized vari-
ance to be zero that we discussed in the preceding example. Whenever a nonzero
vector a satisfies one of the following three conditions, it satisfies all of them:

(1) Sa=0 (2) a’(x; —x) =0forallj (3) a'x; = c forallj(c = a’x)
\—V_’ "~

aisascaled The linear combination The linear combination of
eigenvector of S of the mean corrected the original data, using a,
with eigenvalue 0.  data, using a, is zero. is a constant.

We showed that if condition (3) is satisfied—that is, if the values for one variable
can be expressed in terms of the others—then the generalized variance is zero
because S has a zero eigenvalue. In the other direction, if condition (1) holds,
then the eigenvector a gives coefficients for the linear dependency of the mean
corrected data.

In any statistical analysis, | S| = 0 means that the measurements on some vari-
ables should be removed from the study as far as the mathematical computations
are concerned. The corresponding reduced data matrix will then lead to a covari-
ance matrix of full rank and a nonzero generalized variance. The question of which
measurements to remove in degenerate cases is not easy to answer. When there is a
choice, one should retain measurements on a (presumed) causal variable instead of
those on a secondary characteristic. We shall return to this subject in our discussion
of principal components.

At this point, we settle for delineating some simple conditions for § to be of full
rank or of reduced rank.

Result 3.3, If n < p, thatis, (sample size) =< (number of variables), then |S| = 0
for all samples.

Proof. We must show that the rank of S is less than or equal to p and then apply
Result 2A 9.

For any fixed sample, the n row vectors in (3-18) sum to the zero vector. The
existence of this linear combination means that the rank of X — 1x’ is less than or
equal to n — 1, which, in turn, is less than or equal to p — 1 because n < p. Since

n-1) 8 =X-1x)X -1x)
(pxp) (pXn) (nxp)
the kth column of 8§, col,(8S), can be written as a linear combination of the columns
of (X - 1x')". In particular,

(n—1)col,(8) = (X - 1¥') col, (X - Ix')
= (xix — %) coly(X = 1x') + -+ + (xpp — ) col (X - IX')'

Since the column vectors of (X — 1x’)" sum to the zero vector, we can write, for
example, col, (X — 1x’)’ as the negative of the sum of the remaining column vectors.
After substituting for row;(X — 1x')’ in the preceding equation, we can express
coli(S) as a linear combination of the at most n — 1 linearly independent row vec-
tors coly(X — 1x')', ..., col (X — 1x')". The rank of § is therefore less than or equal
to n — 1, which—as noted at the beginning of the proof—is less than or equal to
p — 1, and § is singular. This implies, from Result 2A.9, that |S| = 0. =
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Result 3.4. Let the p X 1 vectors X, Xa,.. ., X, where x; is the jth row of the data
matrix X, be realizations of the independent random vectors Xy, X, ..., X,,. Then

1. Ifthe linear combination a'X; has positive variance for each constant vector a # (),
then, provided that p < n, S has full rank with probability 1 and |S| > 0.
2. If, with probability 1, 2'X is a constant (for example, ¢) for all j, then |S| = 0.

Proof. (Part 2). If a'X; = o X + mXp +ota X =c with probability 1,

a'x; = cforall j, and the sample mean of this linear combination isc = », (a,x,
- - - _ =1
+ axxjp + o+ apx;p)/n = aX; + @X; + .-+ +apx, = a'x. Then !
X1~ X X1p = %,
(X -I)a=a : +oo+a, :
Xg1 — X1 L xnp — Xp
a'x; — a'x c—c |
= : = : =0
a'x, —a'’x c-c |
indicating linear dependence; the conclusion follows from Result 3.2.
The proof of Part (1) is difficult and can be found in [2]. -

Generalized Variance Determined by |R|
and lts Geometrical Interpretation

The generalized sample variance is unduly affected by the variability of measure-
ments on a single variable. For example, suppose some s;; is either large or quite
small. Then, geometrically, the corresponding deviation vector d; = (y; — ¥;1) will
be very long or very short and will therefore clearly be an important factor in deter-
mining volume. Consequently, it is sometimes useful to scale all the deviation vec-
tors so that they have the same length.

Scaling the residual vectors is equivalent to replacing each original observation
xj by its standardized value (xj; — %)/ Vi The sample covariance matrix of the
standardized variables is then R, the sample correlation matrix of the original vari-

ables. (See Exercise 3.13.) We define

Generalized sample variance \ _ R
of the standardized variables / |R| (3-19)

Since the resulting vectors
[(xie — %)/ Vi, (ke = X/ Voo (Xmic = %)/ Vee] = (e — Tl)'/ Vsir

Vi — 1, the generalized sample variance of the standardized vari-

all have length
n these vectors are nearly perpendicular and will be small

ables will be large whe
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when two or more of these vectors are in almost the same direction. Employing the
argument leading to (3-7), we readily find that the cosine of the angle 6;; between
(v; — ¥1)/Vs; and (yx — %1)/Vsi, is the sample correlation coefficient 7.
Therefore, we can make the statement that |R | is large when all the r;; are nearly
zero and it is small when one or more of the r;;, are nearly +1 or ~1.

In sum, we have the following result: Let

X T X
7
- xz"—ii
.~ x1 Z2i 7
£y’\/——T.’)= V' Sii s i=1,2,...,P
ii :
Xpi — X
. Vs ]

be the deviation vectors of the standardized variables. The ith deviation vectors lie
in the direction of d;, but all have a squared length of n — 1. The volume generated
in p-space by the deviation vectors can be related to the generalized sample vari-
ance. The same steps that lead to (3-15) produce

Generalized sample variance ~
(of the standardizgd variables) = R| = (n ~ 1)™(volume)? (3-20)
The volume generated by deviation vectors of the standardized variables is il-
lustrated in Figure 3.10 for the two sets of deviation vectors graphed in Figure 3.6.
A comparison of Figures 3.10 and 3.6 reveals that the influence of the d, vector
(large variability in x,) on the squared volume |S|is much greater than its influ-
ence on the squared volume |R|. :

@ ®)

Figure 3.10 The volume generated by equal-length deviation vectors of
the standardized variables.
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The quantities | S | and |R | are connected by the relationship

(S| = (s11522" " 5,,)|R| (321)
SO

~ (n = 1)°|8] = (n — 1)P(s1152°5,,) | R| (3-22)

[The proof of (3-21) is left to the reader as Exercise 3.12.]

Interpreting (3-22) in terms of volumes, we see from (3-15) and (3-20) that the
squared volume (n — 1)?|S| is proportional to the squared volume (n — 1}°|R|.
The constant of proportionality is the product of the variances, which, in turn, is
proportional to the product of the squares of the lengths (n — 1)s;; of the d,.
Equation (3-21) shows, algebraically, how a change in the.measurement scale of X,
for example, will alter the relationship between the generalized variances. Since |R |
is based on standardized measurements, it is unaffected by the change in scale.
However, the relative value of |S| will be changed whenever the multiplicative
factor s;; changes.

Example 3.11 (lllustrating the relation between |S|and |R|) Let us illustrate the
relationship in (3-21) for the generalized variances |S| and |R| when p = 3,
Suppose

4
=13
1

N W W

1
3x3
X

( ) 1

Then s1; = 4, 532 = 9, and 533 = 1. Moreover,

M= R
WIN et B
— LN B

Using Definition 2A.24, we obtain

3

9
IS| = 4|, +

= N

2
(-1 + 3] 1‘(—1>3+1

9
2‘(—1)‘

=4(9-4)-33-2)+1(6-9)=14

— WIN

IR| =1 (~1)? +3|F 2|(-1° +;

(-1)*

O = 2 (=

2
3
1

1
2
3

LR
N [t B [t

=(1-9)-GGC-)+G6G-)=5
It then follows that

14 = |S| = 5115253 R| = (4)(9) (1) (%) = 14 (check)
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Another Generalization of Variance

We conclude-this discussion by mentioning another generalization of variance.
Specifically, we define the rotal sample variance as the sum of the diagonal elements
of the sample variance—cowvariance matrix S. Thus,

Total sample variance = s;; + 533 + ++- + 5, (3-23)

Example 3.12 (Calculating the total sample variance) Calculate the total sample
variance for the variance—covariance matrices S in Examples 3.7 and 3.9.
From Example 3.7.

s [252.04 —68.43:|

—-6843 12367
and
Total sample variance = sy; + 55, = 252.04 + 123.67 = 375.71

From Example 3.9,

3 =20

S=|-%2 1}

0 11 .

and
Total sample variance = s;; + s, + 533 =3+ 1+ 1=35 ]

Geometrically, the total sample variance is the sum of the squared lengths of the
p deviation vectors d; = (y; — %11),...,d, = (y, — %,1), divided by n — 1. The
total sample variance criterion pays no attention to the orientation (correlation
structure) of the residual vectors. For instance, it assigns the same values to both sets
of residual vectors (a) and (b) in Figure 3.6.

3.5 Sample Mean, Covariance, and Correlation
as Matrix Operations

We have developed geometrical representations of the data matrix X and the de-
rived descriptive statistics x and S. In addition, it is possible to link algebraically the
calculation of X and § directly to X using matrix operations. The resulting expres-
sions, which depict the relation between X, S, and the full data set X concisely, are
easily programmed on electronic computers.
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We have it that X; = (xy;+1 + xp;+1 + --- + x,;*1)/n = yj1/n. Therefore,

Ea —E_ (xll xz o X, [ 1]
n
_ | X y21 (| X X2 o x|
x: = e
n
.ip &]_- xpl Xp2 xpn 1
L 1 L~] L : JU
or
_ 1
x=;X1 (3-24)

That is, X is calculated from the transposed data matrix by postmultiplying by the
vector 1 and then multiplying the result by the constant 1/n.

Next, we create an n X p matrix of means by transposing both sides of (3-24)
and premultiplying by 1; that is,

X, X, X,
) il -

1% =X = [ (3-25)
X % %,

Subtracting this result from X produces the n X p matrix of deviations (residuals)

X1 ~ Xy Xz~ Xz o Xjp T Xp
1 Xy~ X; X9 — X3 v Xy, — X
21 1 X22 2
X--11X = . . . T (3-26)
xn1¥f1 an_iZ xnp_ip

Now, the matrix (n — 1)S representing sums of squares and cross products is just
the transpose of the matrix (3-26) times the matrix itself, or

X3 =X X1 — X o Xy — X
X12 =X X3~ X3 vt Xy — X
(n-18= . . . .
Yip = Xp Xop ~ Xp v Xnp — X
X131 — X1 X2 — Xz ot Xjp T Xp
x X1~ X X3 — X3 v Xyp— X
xnl_'il xn2_i2 xnp——x_p

- (x - iu'x)' (x - iu'x) - X'(I _ lu') X
n n n
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since
1 ! 1 1 1
(I - —11') (I - —ll’) =1-—-11' - l11’ + izll’ll’ =1—--11
n n 4 n n n n
To summarize, the matrix expressions relating X and S to the data set X are
1 ¢
x=-X"1
n
1 , 1
=-—X'1-~-11|X 3-27)
n-1 n
The result for 8,, is similar, except that 1/n replaces 1/(n — 1) as the first factor.
The relations in (3-27) show clearly how matrix operations on the data matrix
X lead to x and S.
Once § is computed, it can be related to the sample correlation matrix R. The

resulting expression can also be “inverted” to relate R to S. We first define the p X p
sample standard deviation matrix D'? and compute its inverse, (D¥2)™' = D772 Let

—\/s” 0 0 ]
pz=| 0 Va2 oo 0 (3-28)
(p%p) : : -, :
L 0 . \/s“,J
Then
-1 -
Vi
1
0 0
D12 = V_Szz )
(pXp) : :
1
0 0 —=
vVSpp
Since
S S12 slpw
S = : O :
Sip S2p " Spp ]
and
S11 512 S1p )
Vst Vs Vs Vs V811 VS 1 np - np
R = : : g : - T
slp sZp . spp rlp rzp o 1
we have

R = D128p-12 (3-29)
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Postmultiplying and Eremultiplying both sides of (3-29) by D'/ and noting that
p-12D = DY2D7? = 1 gives
S = DIZRD? (3-30)

That is, R can be obtained from the information in S, whereas S can be obtained from
D2 and R. Equations (3-29) and (3-30) are sample analogs of (2-36) and (2-37).

3.6 Sample Values of Linear Combinations of Variables

We have introduced linear comnbinations of p variables in Section 2.6. In many multi-
variate procedures, we are led naturally to consider a linear combination of the form

X=X+ X+ -+, X
2 pp

whose observed value on the jth trial is
clxl- = clxl-l + szl-z 4 e 4 Cprp’ ]= 1,2,.-.," (3'31)

The n derived observations in (3-31) have

('x; + e'x; + -+ e'x,,)
n

Sample mean =
. 1 =
=c(x1+x2+~-+x,,);=cx (3-32)
Since (¢'x; — c’}i)2 = (e'(x; - i))2 = ¢'(x; — X)(x; — X)'¢, we have

(c'x; — c’i)2 + (e'x; — c’i)2 +--- 4+ (e'x, — c’i)2

n—1

Sample variance =

d(x; - X)X~ X)e+ e(x —X)(x; —X)c+ -+ (X, ~ X)(x, — X)'c
=T n-1

(B R (D)X - X) (X —X) (X — X)
- n—-1 ¢
or

Sample variance of ¢'X = ¢'Sc (3-33)

Equations (3-32) and (3-33) are sample analogs of (2-43). They correspond to sub-
stituting the sample quantities X and § for the “population” quantities u and X,
respectively, in (2-43).

Now consider a second linear combination

bX=5X +bX,+:-+b

X,

P
whose observed value on the jth trial is

b'x; =bixj +byxp++byx;,, j=12,....n (3-39)
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It follows from (3-32) and (3-33) that the sample mean and variance of these

derived observations are
Sample mean of b'’X = b’x

Sample variance of b’X = b'Sb
Moreover, the sample covariance computed from pairs of observations on
b'X and ¢'X is
Sample covariance
_ (b'x; — bX)(e'x; — ¢'X) + (b'X; — b'X)(e'x; — €'X) + -0 + (b'X, — b'X) (X, - c'x)

n—1
Cb(x = ®)(x; —X)'e + b'(x — X)(Xg ~ X)'e + -+ b(X, — ) (X — X)'e
B n-1
B b,[(xl ~ D) =%+ (- R (XK + ot (X, D) (X, i)'}
- n-1 ¢

or

Sample covariance of b’X and ¢'X = b'Se¢ (3-35)

In sum, we have the following result.

Result 3.5. The linear combinations
b'X =bX; + bX, +--+ bX,
X=X+ Xy + -+ X,
have sample means, variances, and covariances that are related to X and S by
Sample mean of b’X = b'x
Sample meanof ¢'X = ¢'x
Sample variance of b’X = b’Sb (3-36)
Sample variance of ¢'X = ¢'S¢
Sample covariance of b’X and ¢'X = b'S¢

Example 3.13 (Means and covariances for linear combinations) We shall consider
two linear combinations and their derived values for the n = 3 observations given

in Example 3.9 as
X1 X1z X3
X= X1 X2 X33 | =
X31 X33 X33

B
S =N
H W

Consider the two linear combinations
X
bX =02 2 -1]| X, |=2X, +2X; — X5
X3
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and

¢X=[1 -1 3| X|=X—-X;+3X;
X3

The means, variances, and covariance will first be evaluated directly and then be
evaluated by (3-36).

Observations on these linear combinations are obtained by replacing X, X,,
and X; with their observed values. For example, the n = 3 observations on b’X are
b’xl = 2X11 + Zilz - X3 = 2(1) + 2(2) - (5) =1
b'x, = 2x1 + 2255 — X3 = 2(4) + 2(1) — (6) = 4
b'x; = 2x3; + 2x3; — X33 = 2(4) + 2(0) — (4) = 4

The sample mean and variance of these values are, respectively,

(1+4+4)
Sample mean =——3——=3
1-3)2+ (4-3)P+ (4 —3)?
Samplevariance=( ) (3_1) ( 3) =3

In a similar manner, the n = 3 observations on ¢'X are
¢'xy = lxy; — Lxg + 33 =1(1) - 1(2) + 3(5) = 14
¢xp = 1(4) — 1(1) +3(6) =21
c'xy = 1(4) — 1(0) + 3(4) =16

and
(14 + 21 + 16)
Sample mean =—3—= 17
14 — 1772 + (21 - 17) + (16 — 17)?
Sample variance = ( Y+ 3= 1) ( 17) =13

Moreover, the sample covariance, computed from the pairs of observations
(b'xy, €'X1), (b'x,, ¢'xp), and (b'x3, c'x3), is
Sample covariance

(1 -3)4a-17)+ (4 -3)(@ - 17) + (4 -3)(16 —17) 9

- 3-1 =2

Alternatively, we use the sample mean vector X and sample covariance matrix S
derived from the original data matrix X to calculate the sample means, variances,
and covariances for the linear combinations. Thus, if only the descriptive statistics
are of interest, we do not even need to calculate the observations b’x; and ¢'x;.

From Example 3.9,

[==N STIFR)
NI = R
Ll STL )

3
£=|1] and S=| -
5
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Consequently, using (3-36), we find that the two sample means for the derived
observations are

3
Samplemeanof b’'X =b'x =[2 2 -1}/ 1|=3 (check)
L5
_31
Samplemeanofc¢’X =c¢'x ={1 -1 3]|1|=17 (check)
5

Using (3-36), we also have
Sample variance of b’X = b’Sh

N =W
- O
N

Sample variance of ¢'X = ¢'Se¢

3
1 -1 3] -3
2

— = O

9
2
=[1 -1 3]|~-1[=13 (check)
s
2

Sample covariance of b’X and ¢'X = b’Sc

i

3 =20 1
=22 -1]|-2 1 %]
Lo 11 3
"9
[ 3
=[2 2 -1]| -1|=2  (check)
5
- 2

As indicated, these last results check with the corresponding sample quantities
computed directly from the observations on the linear combinations. ||

The sample mean and covariance relations in Result 3.5 pertain to any number
of linear combinations. Consider the g linear combinations

a,-le + al-zXz + -+ a,'po, [ = 1,2,..., q (3-37)
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Exercises

These can be expressed in matrix notation as

a“XI + alzXz + o+ alep a1 ayp - alp Xl

a; X; + ay,X; +-o- aszp _| @1 @ o ay, X,
: : : : o : Sl = AX

apXy + BpXy +oc+ akX, 81 82 v ag, || Xp
(3-38)

Taking the ith row of A, a/, to be b’ and the kth row of A, aj, to be ¢/, we see that
Equations (3-36) imply that the ith row of AX has sample mean ajx and the ith and
kth rows of AX have sample covariance aiS a,. Note that a8 a, is the (i, k)th ele-

ment of ASA’.

Result 3.6. The g linear combinations AX in (3-38) have sample mean vector Az
and sample covariance matrix ASA’. ~

3.1

3.2.

3.3.

3.4.

Given the data matrix
9 1
X=|53
12

(a) Graph thescatter plotin p = 2 dimensions. Locate the sample mean on your diagram.
{b) Sketch the n = 3-dimensional representation of the data, and plat the deviation
vectors y; — x;landy, ~ X.1.

(c) Sketch the deviation vectors in (b) emanating from the origin. Calculate the lengths
of these vectors and the cosine of the angle between them. Relate these quantities to

S, andR.

Given the data matrix

—

(a) Graph thescatterplotin p = 2 dimensions, and locate the sample mean on your diagram,

(b) Sketch the n = 3-space representation of the data, and plot the deviation vectors
y; — X landy, - X1

(c) Sketch the deviation vectors in (b) emanating from the origin. Calculate their lengths
and the cosine of the angle between them. Relate these quantities to S,, and R.

Perform the decomposition of y; into X;1 and y; — X;1 using the first column of the data

matrix in Example 3.9.

Use the six observations on the variable X}, in units of millions, from Table 1.1.

(a) Find the projectionon’ = [1,1,1,1,1,1].

(b) Calcuiate the deviation vector y; — X;1. Relate its length to the sample standard
deviation.
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3.6.

3.7.

3.8,

3.9.
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(c) Graph (to scale) the triangle formed by y,, X1, and y; — X,1. Identify the length of
each component in your graph.

(d) Repeat Parts a— for the variable X, in Table 1.1.
(e) Graph (to scale) the two deviation vectors y, — ¥;1 and y, ~ ¥,1. Calculate the
value of the angle between them.

Calculate the generalized sample variance |$ | for (a) the data matrix X in Exercise 3.1
and (b) the data matrix X in Exercise 3.2,

Consider the data matrix

-1 3 -2
X = 2 4 2
52 3

(a) Calculate the matrix of deviations (residuals), X — 1%’. Is this matrix of full rank?
Explain.

{b) Determine S and calculate the géneralized sample variance |S |. Interpret the latter
geometrically.

(c) Using the results in (b), calculate the total sample variance. [See (3-23).]
Sketch the solid ellipsoids (x — x)'S™'(x — X} = 1 [see (3-16)] for the three matrices

=[] s[2 ) sl

(Note that these matrices have the same generalized variance |S |.)

Given

100 -3 -1
$=|01 0| and §=|—-3 1 -3
001 -3 1

[SIE ST

(a) Calculate the total sample variance for each S. Compare the results.
(b) Calculate the generalized sample variance for each S, and compare the results. Com-
ment on the discrepancies, if any, found between Parts a and b.

The following data matrix contains data on test scores, with x, = score on first test,
X, = score on second test,and x; = total score on the two tests:

12 17 29
18 20 38
X =14 16 30
20 18 38
16 19 35

(a) Obtain the mean corrected data matrix, and verify that the columns are linearly de-
pendent. Specify an a’ = [ay, a;, a3] vector that establishes the linear dependence.

(b) Obtain the sample covariance matrix S, and verify that the generalized variance is
zero. Also, show that Sa = 0, so a can be rescaled to be an eigenvector correspond-
ing to eigenvalue zero.

(c) Verify that the third column of the data matrix is the sum of the first two columns.
That is, show that there is linear dependence, witha, = 1,2, = 1, and a3 = —1.
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3.10.

3.12.

3.13.

3.14.

3.15.

When the generalized variance is zero, it is the columns of the mean corrected dat

matrix X, = X — 1%’ that are linearly dependent, not necessari :
12 £ s ssarily th

matrix itself. Given the data y those of the data

(S R I S )
WO N =
AN OND

(a) Obtain the mean corrected data matrix, and verify that the colum i
. , » ns are li
dependent. Specify an a’ = [ay, a,, a3] vector that establishes the dependencfe1e£lrly

(b) Obtain the sample covariance matrix S, and verify that the generalized variance i
S

Zero.
(c) Show that the columns of the data matrix are linearly independent in this case

. Use the sample covariance obtained in Example 3.7 to verify (3-29) and (3-30), which

state that R = D Y28D~ 1% and DYV*RD2 = §.

Show that [S] = (s11522° - 5pp) | R}
Hint: From Egquation (3-30), § = D'2RD' Takin i i

s . g determinants gives =
|D2||R [|D?|. (See Result 2A.11.) Now examine | D1/2|. # S
Given a data matrix X and the resulting sample correlation matrix R

sider the standardize i - %
con idZ o ra g observations (x;y 'F,‘)/\/s'kk', k=1,2,....p
j=12,...,n Show tha these standardized quantities have sample covariance:

matrix K.

Consider the data matrix X in Exercise 3.1. We have n = 3 i
! -1. = 3 observations = ;
ables X; and X,. Form the linear combinations onp = 2 vari-

, X
bX = 2 31[X;]=zx1+3xz

(a) Evaluate the sample means, variances, and covariance of b’X i
val [ > and ¢’X fi
principles. That 1s, calculate the observed values of b'X and ¢'X, and thel:ol[ln ﬁtﬁt
sample mean, variance, and covariance formulas. ' se fe

(b) Calculate the sample means, variances, and covariance of b’X ' .
Compare the results in (a) and (b). and ¢'X using (3-36)

Repeat Exercise 3.14 using the data matrix

X =

[o -
W A
L N W
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3.a7.

3.18.

3.19.
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and the linear combinations

X,
X
X3

bX=(1 1 1]

and
¢X =[1 2

X,

Let V be a vector random variable with mean vector E(V) = g, and covariance matriX
E(V — py)(V — py)’ =3, Show that E(VV') = 3y + pyp.

Show that, if ( X1) and ( Zl) are independent, then each component of X is
pX qx ‘

independent of each component of Z.

Hint: P[X; = x, X2 < xp,..., X, < xpand Z; < z3,..., Z, < 74)

=P[X1 $X],X25 va"‘vXpsxp].P[Zl = Z]’.4.,Zq_.<_ Zq]

by independence. Let x;,..., xp and 23, ..., z, tend to infinity, to obtain

=

P[X:=xjand Z, = z1] = P[X; = x,]- P[Z, = 7]

for all x;, z;. So X and Z, are independent. Repeat for other pairs.

Energy consumption in 2001, by state, from the major sources

x; = petroleum x, = natural gas

x3 = hydroelectric power x4 = nuclear electric power

is recorded in quadrillions (10'®) of BTUs (Source: Statistical Abstract of the United
States 2006).
The resulting mean and covariance matrix are

0.766 0.856 0.635 0.173 0.096
%= 0.508 S = 0.635 0.568 0.128 0.067
0.438 0173 0.127 0171 0.039
0.161 0.096 0.067 0.039 0.043

(a) Using the summary statistics, determine the sample mean and variance of a state’s
total energy consumption for these major sources.

(b) Determine the sample mean and variance of the excess of petroleum consumption
over natural gas consumption. Also find the sample covariance of this variable with
the total variable in part a.

Using the summary statistics for the first three variables in Exercise 3.18, verify the
relation

[S] = (511522 533) |R]|
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3.20. In northern climates, roads must be cleared of snow quickly following a storm. One
measure of storm severity is x; = its duration in hours, while the effectiveness of snow
removal can be quantified by x, = the number of hours crews, men, and machine, spend
to clear snow. Here are the results for 25 incidents in Wisconsin.

r:'I;bhz 3.2 Snow Data

—

X1 Xy Xy Xy X Xy

125 137 | 90 244 [ 35 261
145 165 | 65 182 | 80 145
80 174 | 105 220 | 175 42.3
90 110 ] 100 325 | 105 175
195 236 | 45 187 |120 218
80 132 | 70 158 | 60 104
90 321 | 85 156 |130 256
70 123 65 120

70 118 | 80 128 L
E—

—_

(a) Find the sample mean and variance of the difference x, — x; by first obtaining the
summary statistics.

(b) Obtain the mean and variance by first obtaining the individual values xp — x;,
forj=1,2,...,25 and then calculating the mean and variance. Compare these values
with those obtained in part a.
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